

¥

Basic Usage of HPC

Session Outcome

- Type of storages and differences
- Understand the components in UMHPC
- Understand the SLURM job parameters
- Understand how to submit a job
- How to check the log files

What is HPC

1

Login Node

- The stuffs that users usually will do in here:
 - $\circ~$ Transfer and manage files
 - o Submit jobs
 - $\circ~$ Check error and output logs
 - \circ Monitor jobs
- Things to avoid:
 - O Execute CPU or memory intensive scripts
 - O Compile application
 - O Extract large archive file

Storage Cluster

	Home Directory	Lustre Directory
File System	CephFS	Lustre
Directory	/home	/lustre
Storage Type	Persistent	Non-persistent
Storage Clean Up	No	Files that have not been accessed for 60 days
Quota	100 GB per user	Unlimited
Capacity	74 TB	230 TB
Backup	Daily	No
Group Directory	No	Yes

Compute Node

- Also referred as worker node.
- Some of the compute nodes have GPU.
- Your job will be executing in compute node(s).
- You do not have direct access to compute node unless you have submitted a job.

When Do You Need HPC?

- Your job will be running for very long period.
- Your job can utilize multiple CPU cores for parallelism.
- You need to repeat the same calculation with many different inputs.
- Your can utilize more powerful GPU(s).
- Your job consume very large amount of memory.

Basic Requirement to Access HPC

- A personal computing device
- Internet
- User account with HPC access
- OpenVPN and DICC OpenVPN profile

Account & Limits

- Every fresh user in DICC who wish to use HPC must request HPC access in DICC service desk.
- Every fresh HPC user will have limit resources access.

Resource	Limited Account	Unlocked Account
CPU	4	450
Memory	16 GB	2 TB
GPU	1	Unlimited
Wall Time	1 hour	7 days
QoS	limited	short, normal, long
Accessible Partition	cpu-opteron, gpu-k10, gpu-k40c	All partition

How to Submit A Job?

2

Things to Know

- File Transfer
- Application & Modules
- Job Parameter
- Job Submission
- Post-Job Submission

Transferring Files (Windows)

- For Windows user, we recommend user to use WinSCP:
 - Protocol: SCP
 - Port: 22
 - Host name: umhpc.dicc.um.edu.my

Transferring Files (Linux)

- For Linux and MacOS, you can use **scp** command in your terminal/console:
 - To transfer file into UMHPC:
 - \$ scp /path/to/filename username@umhpc.dicc.um.edu.my:/path/to/destination
 - \circ To transfer folder into UMHPC:

\$ scp -r /path/to/directory <u>username@umhpc.dicc.um.edu.my:/path/to/destination</u>

 Alternatively, you can use FileZilla as your FTP/SCP client to transfer your files between UMHPC and your local workstation.

Hands On

- Create a folder, **my_first_job** in your local machine.
- Create an empty text file, **tutorial.sh**
- Transfer the folder into **UMHPC**.

Things to Know

- File Transfer
- Application & Modules
- Job Parameter
- Job Submission
- Post-Job Submission

Application & Modules

• Most of the application/module or system library are NOT available in login node.

Function	Login Node	Compute node
List all applications in all compute nodes	node-modules	
List all application in current instance	module avail	module avail
Load a specific application	module load	module load
List all the loaded application/module	module list	module list
Unload a loaded module	module unload	module unload

Hands On

- Verify the presence of miniconda using the command:
 - \circ conda --version
- Check the available module installed in login node.
- Load miniconda module.
- List all the module(s) had been loaded currently.
- Verify again the presence of miniconda using the command:
 - o conda --version
- Unload all the modules.
- List out all the module installed in compute nodes.

Answer

- \$ conda --version
- \$ module avail
- \$ module load miniconda/conda-22.11.1
- \$ module list
- \$ conda --version
- \$ module purge
- \$ node-modules

Things to Know

- Application & Modules
- File Transfer
- Job Parameter
- Job Submission
- Post-Job Submission

Job Parameters

• Job parameters determine what kind of resources you want.

Parameter	Description	Example
partition, -p	Specify the partition to run job.	partition=cpu-opteron
––ntasks, –n	Specify the number of CPUs/cores required.	ntasks=4
mem	Specify the amount of memory needed per node.	mem=16G
nodes, -N	Specify the number of compute nodes.	nodes=1
job-name, -J	Specify the name of the job.	job-name=job01
gpus, -G	Specify the number and the type of GPU card needed.	gpus=1 orgpus=titanxp:1
qos, -q	Specify the QoS for the job	qos=normal
output, -o	Specify the filename for output log.	output=/home/user/george/output.log
error, -e	Specify the filename for error log.	error=/home/user/george/error.log
hint	Enable/Disable hyper-threading	hint=nomultithread

Resources

- Resources summary can be displayed by using the command:
 - \circ cluster-info

+ Partition	Node	Cores	Threads	Mem (GB)	GPU	
+ сри-ерус	cpu12	48	2	234		
	cpu13	48	2	234		
	cpu14	48	2	234		
	cpu15	48	2	234		
cpu-opteron	cpu01	64	1	234		
	cpu03	64	1	234		
	cpu04	64	1	234		
	cpu05	64	1	234		
	cpu07	64	1	234		
	cpu08	64	1	234		
	cpu09	64	1	234		
	cpu10	64	1	234		
1	cpull	64	1	218		
gpu-k10	gpu01	16	2	39	k10:	8
	gpu03	16	2	54	k10:	8
gpu-k40c	gpu04	16	2	54	k40c:	2
gpu-titan +	gpu02	16	2	117	titanx: titanxp:	1 2
gpu-v100s	gpu05	32	2	171	v100s:	2

Partition

- Currently, there are 6 partitions available in DICC:
 - cpu-opteron (default) 1800 MHz
 - **cpu-epyc** 3200 MHz
 - **gpu-k10** 745 MHz
 - **gpu-k40c** 876 MHz
 - gpu-titan
 - **Titan X** 1089 MHz
 - **Titan Xp** 1582 MHz
 - **gpu-v100s** 1597 MHz
- Do not submit CPU only job into GPU partition!

- QoS determine the maximum walltime of a job.
- Every job have its own unique priority.
 - **sprio** command can be used to check job priority in the queue currently.

QoS	Maximum Wall time	Priority Boost
Short	1 hour	+10,000
Normal (default)	1 day	_
Long	7 days	_

JOBID	PARTITION	PRIORITY	SITE	AGE	FAIRSHARE	QOS
52551	gpu-v100s	19122	0	18122	1000	0
52584	gpu-v100s	18526	0	17926	600	0
52777	gpu-v100s	15713	0	13914	1800	0
52922	gpu-titan	11868	0	10668	1200	0
52965	gpu-titan	10319	0	9119	1200	0
53178	gpu-v100s	3399	0	2800	600	0
53201	cpu-opter	1691	0	1291	400	0
53209	gpu-titan	2883	0	1083	1800	0
53220	gpu-v100s	2541	0	741	1800	0
53226	gpu-v100s	2533	0	733	1800	0
53235	cpu-opter	1802	0	202	1600	0
53237	cpu-opter	1801	0	202	1600	0
53238	cpu-opter	1801	0	201	1600	0
53241	gpu-k10	959	0	159	800	0
53257	cpu-epyc	1436	0	37	1400	0
53258	cpu-epyc	1436	0	37	1400	0
53263	cpu-opter	1416	0	16	1400	0
53264	cpu-opter	1416	0	16	1400	0
53265	cpu-opter	1416	0	16	1400	0
53266	cpu-opter	1415	0	16	1400	0
53267	cpu-opter	1415	0	16	1400	0
53270	cpu-opter	3403	0	3	3400	0

Hyper-Threading

- It is highly recommended to include the **--hint** parameter in the submission script.
- In most of the scenario, disabling hyper-threading will yield better performance.
- To disable hyper-threading,
 - \circ --hint=nomultithread

Recommendations

 Always start small and scale larger when your are confident on how much you have understood your job.

CPU	Memory (GB)	QoS	Usage
4	16	short	Troubleshooting & debug
16	50	normal	Standard quick job
16	50	long	Standard small job
24 for EPYC 32 for Opteron	100	long	Standard medium job
48 for EPYC 64 for OPTERON	200	long	Standard large job

Things to Know

- Application & Modules
- File Transfer
- Job Parameter
- Job Submission
- Post-Job Submission

Job Submission

Batch Mode	Interactive Mode				
Use submission script to execute.	Enter the node to execute.				
Job continue to execute even if you have lost connection or your session terminated.	Job terminated on connection lost/terminated session.				
Cannot make changes during the execution.	Able to make interactive input during the execution.				
Usually done by using the command: sbatch	salloc to allocate resources. srun to join allocated resources and run calculation.				
Execute until the maximum walltime.					
Must go through queue for resources allocation.					

Batch Mode

- When to use Batch Mode:
 - You have unstable network connection.
 - The application take a long time to complete.
 - No input needed during the process of calculation.
 - You need to run same calculation/simulation multiple times with different input files.
- This method is the recommended and standard way of running a job in HPC environment.
- Requirements:
 - Job script
 - Job parameters
 - Commands to execute
 - Input files

Example of Batch Script

#!/bin/bash -1

- **#SBATCH** --partition=cpu-epyc
- **#SBATCH** --job-name=job01
- **#SBATCH** --nodes=1
- **#SBATCH** --ntasks=24
- **#SBATCH** --mem=100G
- **#SBATCH** --qos=normal

```
module load myModule
app -i input.file -o output.file
```

Batch Mode (cont.)

- Use **sbatch** command to submit the job script.
 - 0 \$ sbatch batch_script.sh
- Use **scance1** command to cancel and remove the submitted job from queue. (Note: Once the job is cancelled, it cannot be recovered!)
 - \$ scancel 12345

Hands On

- Edit the script, tutorial.sh to fulfil the following scenario:
 - Submitting partition: cpu-opteron
 - Total number of CPU cores: 16
 - \circ Number of nodes: 2
 - Amount of memory per node: 50G
 - \circ Quality of service: short
 - \circ Job name: tutorial
 - \circ Disabled hyper-threading

#!/bin/bash -1

- **#SBATCH** --partition=cpu-epyc
- #SBATCH --job-name=job01
- **#SBATCH** --nodes=1
- **#SBATCH** --ntasks=24
- **#SBATCH** --mem=100G
- **#SBATCH** --qos=normal

module load myModule
app -i input.file -o output.file

Answer

#!/bin/bash -1

#SBATCH --partition=cpu-opteron

#SBATCH --nodes=2

#SBATCH --ntasks=16

#SBATCH --mem=50G

#SBATCH --qos=short

#SBATCH --job-name=tutorial

#SBATCH --output=%x.out

#SBATCH --error=%x.err

#SBATCH --hint=nomultithread

Interactive Mode

- When to use Interactive Mode:
 - You have to input commands or intermediate input during the application execution.
 - You are trying to compile your own application.
 - You are trying to debug or troubleshoot your calculation or compilation.
- Requirements:
 - Job parameters
 - Commands to execute

Interactive Mode (cont.)

- To start an interactive session, first, you will need to allocate the resources you need then join the session interactively.
- To allocate resource for interactive session:
 - \$ salloc -p cpu-opteron -N 1 -n 4 --mem=16G --qos=normal
- To join the allocated session interactively:
 - \$ srun --jobid=12345 --pty bash -1
- To exit the interactive session, enter exit in terminal twice to leave and relinquish the allocated resources.

Example of Interactive Mode

```
[user@umhpc ~]$ salloc -p cpu-opteron -N 1 -n 4 --mem=16G --qos=normal
salloc: Pending job allocation 12345
salloc: job 12345 queued and waiting for resources
salloc: job 12345 has been allocated resources
salloc: Granted job allocation 12345
salloc: Waiting for resource configuration
salloc: Nodes cpu01 are ready for job
[user@umhpc ~]$ srun --jobid=12345 --pty bash -1
[user@cpu01 ~]$ exit
logout
[user@umhpc ~]$ exit
salloc: Relinquishing job allocation 12345
```

Things to Know

- Application & Modules
- File Transfer
- Job Parameter
- Job Submission
- Post-Job Submission

Job State

- You can check your own job(s) state with the command:
 - 0 \$ squeue -u <username>
- The common job state and the descriptions:

Job State	Description
PD / PENDING	Pending for resource scheduling.
R / RUNNING	The job is currently running.
RQ / REQUEUED	The job has been requeued.
CG / COMPLETING	The job has done execute and is now completing itself.
S / SUSPENDED	The job has been suspended.

JOBID	PARTITION	NAME	USER ST	TIME	NODES	NODELIST (REASON)
53199	сри-ерус	PNaInPS	R	15:23:07	1	cpu15
53195	сри-ерус	PNaSnAsS	R	1-06:26:03	1	cpu12
53189	cpu-epyc	TaSe	R	2-06:23:33	1	cpu13
53235	cpu-opter	mk STAR	PD	0:00	1	(Resources)
53237	cpu-opter	H5N1_2_c	PD	0:00	1	(Priority)
53238	cpu-opter	H1N1 cuf	PD	0:00	1	(Priority)
53201	cpu-opter	ONb-S	PD	0:00	1	(Priority)
53193	cpu-opter	molecule	R	1-11:22:32	1	cpu04
53236	cpu-opter	H5N1 1 c	R	3:52:08	1	cpu01
53136	cpu-opter	 aa	R	3-05:39:24	1	cpu05
53137	cpu-opter	SS	R	3-05:39:24	1	cpu07
53138	cpu-opter	dd	R	3-05:39:24	1	cpu08
53139	cpu-opter	ff	R	3-05:39:24	1	cpu09
53140	cpu-opter	ZZ	R	3-05:39:24	1	cpu10
53249	cpu-opter	interact	R	58:15	1	cpu01
53200	cpu-opter	ONbC	R	1-06:00:45	1	cpu11
53196	cpu-opter	C-S	R	1-06:37:24	1	cpu03
53241	gpu-k10	triplet	PD	0:00	1	(Resources)
53041	gpu-k10	02_prod_	R	12:32:19	1	gpu01
53240	gpu-k10	triplet	R	2:54:39	1	gpu03
52922	gpu-titan	06_prod	PD	0:00	1	(Resources)
52965	gpu-titan	05 prod	PD	0:00	1	(Priority)
53209	gpu-titan	jbmbq	PD	0:00	1	(Priority)
52773	gpu-titan	jxbb	PD	0:00	1	(job requeued in held state
52921	gpu-titan	04_prod	R	1:30:05	1	gpu02
53115	gpu-titan	Jupyter	R	6:20:15	1	gpu02
52551	gpu-v100s	rerun	PD	0:00	1	(Resources)
52584	gpu-v100s	Jupyter	PD	0:00	1	(Priority)
52777	gpu-v100s	jq	PD	0:00	1	(Priority)
53178	gpu-v100s	Jupyter	PD	0:00	1	(Priority)
53220	gpu-v100s	hxbb	PD	0:00	1	(Priority)
53226	gpu-v100s	bq11	PD	0:00	1	(Priority)
52498	gpu-v100s	Jupyter	R	6:10:48	1	gpu05

Job State (cont.)

- If your job(s) is not in queue anymore, here are the possible scenario:
 - Your job(s) is/are completed. Check your output log for result.
 - Your job(s) is/are failed. Check your error log for error message.
- You can use **sacct** command to review the exit state of those jobs.
 - 0 \$ sacct --starttime=2023-01-01 --endtime=2023-01-31

8 1	umhpc: ~] \$	sacct				
JobID	JobName	Partition	Account	AllocCPUS	State	ExitCode
57721	amber	cpu-epyc	free	24	PENDING	0:0
58374	gromacs_k+	gpu-k40c	free	4	PENDING	0:0
58375	gromacs_k+	gpu-k40c	free	8	PENDING	0:0
58376	gromacs_k+	gpu-k40c	free	12	PENDING	0:0
58377	gromacs_k+	gpu-k40c	free	16	PENDING	0:0
58378	gromacs_k+	gpu-k40c	free	4	PENDING	0:0
58379	gromacs k+	gpu-k40c	free	8	PENDING	0:0
58380	gromacs k+	gpu-k40c	free	12	PENDING	0:0
58381	gromacs k+	gpu-k40c	free	16	PENDING	0:0
58382	gromacs t+	gpu-titan	free	4	PENDING	0:0
58383	gromacs t+	gpu-titan	free	8	PENDING	0:0
58384	gromacs t+	gpu-titan	free	16	PENDING	0:0
58385	gromacs t+	gpu-titan	free	12	PENDING	0:0
58386	gromacs t+	gpu-titan	free	4	PENDING	0:0
58387	gromacs t+	gpu-titan	free	8	PENDING	0:0
58388	gromacs t+	gpu-titan	free	12	PENDING	0:0
58389	gromacs t+	gpu-titan	free	16	PENDING	0:0
58390	amber	cpu-epyc	free	24	PENDING	0:0
58395	gromacs v+	gpu-v100s	free	20	COMPLETED	0:0
58395.batch	batch		free	20	COMPLETED	0:0
58395.extern	extern		free	20	COMPLETED	0:0
58396	gromacs_v+	gpu-v100s	free	24	COMPLETED	0:0
58396.batch	batch		free	24	COMPLETED	0:0
58396.extern	extern		free	24	COMPLETED	0:0
58397	gromacs_v+	gpu-v100s	free	28	COMPLETED	0:0
58397.batch	batch		free	28	COMPLETED	0:0
58397.extern	extern		free	28	COMPLETED	0:0
58398	gromacs_v+	gpu-v100s	free	32	COMPLETED	0:0
58398.batch	batch		free	32	COMPLETED	0:0
58398.extern	extern		free	32	COMPLETED	0:0

Job Monitoring

- Make sure your job(s) is running properly.
- Ways to monitor your job(s):
 - Visit DICC OnDemand portal at <u>https://ood.dicc.um.edu.my/</u> under **Jobs** > **Active Jobs** section.
 - SSH into the node executing your jobs and use htop command for CPU usage and nvidia-smi for GPU usage.
 - Check your output log and error log.
- In most scenario, Opteron will yield 100% CPU usage and the other partition will yield a maximum of 50% CPU usage.

- Why my job is in PENDING state with the reason of "job is requeued in held state"?
 - The job is running incorrectly and causing problem to the service.
- My job was failed and the error message show "OOM error". Why?
 - Out-of-Memory (OOM) error is due to the application tend to use more memory than allocated memory. You try to allocate more memory for that particular job.
- Why my job(s) is/are queueing in the queue for very long period?
 - Check the reason in squeue:
 - Priority: There are more jobs with higher priority than your job(s).
 - Resources: Your job(s) is/are up next once the job(s) currently running in the partition have completed.

Useful Portal

- DICC Website <u>https://dicc.um.edu.my</u>
- DICC Jira Service Desk <u>https://jira.dicc.um.edu.my</u>
- ICC Documentation Confluence <u>https://confluence.dicc.um.edu.my</u>

Hands On

• Create a job script, **first_job.sh** in the directory, **my_first_job** to fulfil the following scenario:

- Submit to **cpu-opteron** partition.
- Allocate 4 CPUs, 8 GB memory and 1 node
- $\circ \quad \text{QoS:} \text{limited}$
- Job name: my_first_job
- \circ With output and error log specified
- Commands to be executed by the job:
 - echo "This is my first job in \$ (hostname -s)" #SBATCH --partition=cpu-epyc
 - sleep 10m
- Submit the job as batch mode.
- Use **squeue** to check the job state.
- Use **scance1** to cancel the job.
- Use **sacct** to check your account history.

#!/bin/bash -1

#SBATCH --job-name=job01 #SBATCH --nodes=1

- **#SBATCH** --ntasks=24
- **#SBATCH** --mem=100G
- **#SBATCH** --qos=normal

module load myModule
app -i input.file -o output.file

Answer

#!/bin/bash -1

- **#SBATCH** --partition=cpu-opteron
- #SBATCH --job-name=my_first_job
- **#SBATCH** --nodes=1
- **#SBATCH** --ntasks=4
- **#SBATCH** --mem=8G
- **#SBATCH** --output=%x.out
- **#SBATCH** --error=%x.err
- **#SBATCH** --qos=limited

```
echo "This is my first job in $(hostname -s)" sleep 10m
```

Answer

[user@umhpc ~]\$ sbatch first_job.sh [user@umhpc ~]\$ squeue [user@umhpc ~]\$ scancel <job_id> [user@umhpc ~]\$ sacct

Thank You!