
Basic Usage of HPC

Session Outcome

- Type of storages and differences
- Understand the components in UMHPC
- Understand the SLURM job parameters
- Understand how to submit a job
- How to check the log files

What is HPC

Login Node

- The stuffs that users usually will do in here:
 - o Transfer and manage files
 - Submit jobs
 - Check error and output logs
 - Monitor jobs
- Things to avoid:
 - Execute CPU or memory intensive scripts
 - o Compile application
 - o Extract large archive file

Storage Cluster

Home Directory		Lustre Directory
File System	CephFS	Lustre
Directory	/home	/lustre
Storage Type	Persistent	Non-persistent
Storage Clean Up	No	Files that have not been accessed for 60 days
Quota	100 GB per user	Unlimited
Capacity	- 87 TB	- 230 TB
Backup	Daily	No
Group Directory	No	Yes

Compute Node

- Also referred as worker node.
- Some of the compute nodes have GPU.
- Your job will be executing in compute node(s).
- You do not have direct access to compute node unless you have submitted a job.

When Do You Need HPC?

- Your job will be running for very long period.
- Your job can utilize multiple CPU cores for parallelism.
- You need to repeat the same calculation with many different inputs.
- Your can utilize more powerful GPU(s).
- Your job consume very large amount of memory.

Basic Requirement to Access HPC

- A personal computing device
- Internet
- User account with HPC access
- OpenVPN and DICC OpenVPN profile

Account & Limits

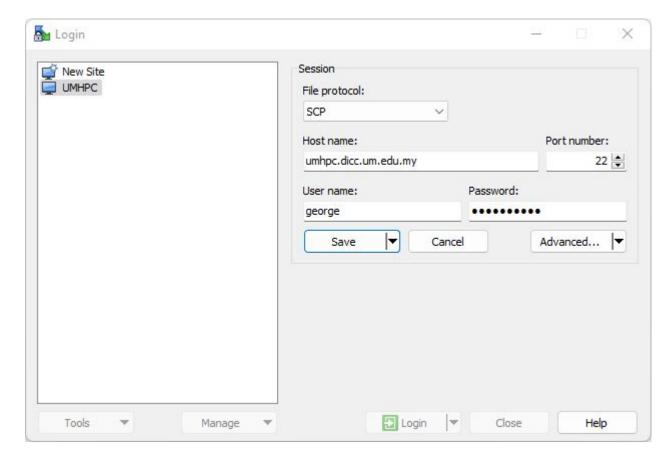
- Every fresh user in DICC who wish to use HPC must request HPC access in DICC service desk.
- Every fresh HPC user will have limit resources access.

Resource	Limited Account	Unlocked Account
CPU	4	450
Memory	16 GB	2 TB
GPU	1	Unlimited
Wall Time	1 hour	7 days
QoS	limited	short, normal, long
Accessible Partition	cpu-opteron, gpu-k10, gpu-k40c	All partition

How to Submit A Job?

Things to Know

- File Transfer
- Application & Modules
- Job Parameter
- Job Submission
- Post-Job Submission


Transferring Files (Windows)

For Windows user, we recommend user to use WinSCP:

Protocol: SCP

Port: 22

O Host name: umhpc.dicc.um.edu.my

Transferring Files (Linux/MacOS)

You can use FileZilla as your FTP/SCP client to transfer your files between UMHPC and your local workstation.

Alternatively (For all OS)

- You can use **scp** command in your terminal/console/command prompt:
 - O To transfer file into UMHPC:
 - \$ scp /path/to/filename username@umhpc.dicc.um.edu.my:/path/to/destination
 - To transfer folder into UMHPC:
 - \$ scp -r /path/to/directory <u>username@umhpc.dicc.um.edu.my:/path/to/destination</u>

Hands On

- Create a folder, my_first_job in your local machine.
- Create an empty text file, tutorial.sh
- Transfer the folder into UMHPC.

Things to Know

- File Transfer
- Application & Modules
- Job Parameter
- Job Submission
- Post-Job Submission

Application & Modules

• Most of the application/module or system library are NOT available in login node.

Function	Login Node	Compute node
List all applications in all compute nodes	node-modules	-
List all application in current instance	module avail	module avail
Load a specific application	module load	module load
List all the loaded application/module	module list	module list
Unload a loaded module	module unload	module unload
Unload all loaded module	module purge	module purge

Hands On

- Verify the presence of miniconda using the command:
 - o conda --version
- Check the available module installed in login node.
- Load miniconda module.
- List all the module(s) had been loaded currently.
- Verify again the presence of miniconda using the command:
 - conda --version
- Unload all the modules.
- List out all the module installed in compute nodes.

Answer

```
$ conda --version
$ module avail
$ module load miniconda/conda-23.5.2
$ module list
$ conda --version
$ module purge
$ node-modules
```

Things to Know

- Application & Modules
- File Transfer
- Job Parameter
- Job Submission
- Post-Job Submission

Job Parameters

• Job parameters determine what kind of resources you want.

Parameter	Description	Example
partition, -p	Specify the partition to run job.	partition=cpu-opteron
ntasks, -n	Specify the number of CPUs/cores required.	ntasks=4
mem	Specify the amount of memory needed per node.	mem=16G
nodes, -N	Specify the number of compute nodes.	nodes=1
job-name, -J	Specify the name of the job.	job-name=job01
gpus, -G	Specify the number and the type of GPU card needed.	gpus=1 orgpus=titanxp:1
qos, -q	Specify the QoS for the job	qos=normal
output, -o	Specify the filename for output log.	output=/home/user/george/output.log
error, -e	Specify the filename for error log.	error=/home/user/george/error.log
hint	Enable/Disable hyper-threading	hint=nomultithread

Resources

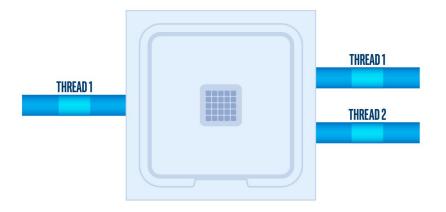
- Resources summary can be displayed by using the command:
 - cluster-info

Partition	Node	Cores	Threads	Mem (GB)	GPU	
 сри-ер у с	cpu12	48	2	234		
	cpu13	48	2	234		
	cpu14	48	2	234		
	cpu15	48	2	234		
cpu-opteron	cpu01	64	1	234		
	cpu03	64	1	234		
	cpu04	64	1	234		
	cpu05	64	1	234		
	cpu07	64	1	234		
	cpu08	64	1	234		
	cpu09	64	1	234		
	cpu10	64	1	234		
	cpu11	64	1	218		
gpu-k10	gpu01	16	2	39	k10:	8
	gpu03	16	2	54	k10:	8
gpu-k40c	gpu04	16	2	54	k40c:	2
gpu-titan	gpu02	 16	2	117	titanx:	1
					titanxp:	2
gpu- v 100s	gpu05	32	2	171	v100s:	2

Partition

- Currently, there are 6 partitions available in DICC:
 - o cpu-opteron (default) 1800 MHz
 - o **cpu-epyc** 3200 MHz
 - o **gpu-k10** 745 MHz
 - o **gpu-k40c** 876 MHz
 - o gpu-titan
 - **Titan X** 1089 MHz
 - Titan Xp 1582 MHz
 - o gpu-v100s 1597 MHz
- Do not submit CPU only job into GPU partition!

QoS


- QoS determine the maximum walltime of a job.
- Every job have its own unique priority.
 - o **sprio** command can be used to check job priority in the queue currently.

QoS	Maximum Wall time	Priority Boost
Short	1 hour	+10,000
Normal (default)	1 day	_
Long	7 days	_

JOBID PARTITION	PRIORITY	SITE	AGE	FAIRSHARE	QOS
52551 gpu-v100s	19122	0	18122	1000	0
52584 gpu-v100s	18526	0	17926	600	0
52777 gpu-v100s	15713	0	13914	1800	0
52922 gpu-titan	11868	0	10668	1200	0
52965 gpu-titan	10319	0	9119	1200	0
53178 gpu-v100s	3399	0	2800	600	0
53201 cpu-opter	1691	0	1291	400	0
53209 gpu-titan	2883	0	1083	1800	0
53220 gpu-v100s	2541	0	741	1800	0
53226 gpu-v100s	2533	0	733	1800	0
53235 cpu-opter	1802	0	202	1600	0
53237 cpu-opter	1801	0	202	1600	0
53238 cpu-opter	1801	0	201	1600	0
53241 gpu-k10	959	0	159	800	0
53257 cpu-epyc	1436	0	37	1400	0
53258 сри-ерус	1436	0	37	1400	0
53263 cpu-opter	1416	0	16	1400	0
53264 cpu-opter	1416	0	16	1400	0
53265 cpu-opter	1416	0	16	1400	0
53266 cpu-opter	1415	0	16	1400	0
53267 cpu-opter	1415	0	16	1400	0
53270 cpu-opter	3403	0	3	3400	0

Hyper-Threading

- It is highly recommended to include the --hint parameter in the submission script.
- In most of the scenario, disabling hyper-threading will yield better performance.
- To disable hyper-threading,
 - --hint=nomultithread

Recommendations

 Always start small and scale larger when your are confident on how much you have understood your job.

CPU(s)	GPU(s)	Memory (GB)	QoS	Usage
4	-	16	short	Troubleshooting & debug
16	_	50	normal	Standard quick job
16	-	50	long	Standard small job
24 for EPYC 32 for Opteron	-	100	long	Standard medium job
48 for EPYC 64 for OPTERON	-	200	long	Standard large job
8	1	16	normal	Standard small GPU job

Things to Know

- Application & Modules
- File Transfer
- Job Parameter
- Job Submission
- Post-Job Submission

Job Submission

Batch Mode	Interactive Mode			
Use <u>submission script</u> to execute.	Enter the node to execute.			
Job continue to execute even if you have lost connection or your session terminated.	Job terminated on connection lost/terminated session.			
Cannot make changes during the execution.	Able to make interactive input during the execution.			
Usually done by using the command: sbatch salloc to allocate resources. srun to join allocated resources and run calculation.				
Execute until the maximum walltime.				
Must go through queue for resources allocation.				

Batch Mode

- When to use Batch Mode:
 - You have unstable network connection.
 - The application take a long time to complete.
 - No input needed during the process of calculation.
 - You need to run same calculation/simulation multiple times with different input files.
- This method is the recommended and standard way of running a job in HPC environment.
- Requirements:
 - Job script
 - Job parameters
 - Commands to execute
 - Input files

Example of Batch Script

```
#!/bin/bash -1
#SBATCH --partition=cpu-epyc
#SBATCH --job-name=job01
#SBATCH --nodes=1
#SBATCH --ntasks=24
#SBATCH --mem=100G
#SBATCH --qos=normal
#SBATCH --hint=multithread
module load myModule
app -i input.file -o output.file
```

Batch Mode (cont.)

- Use sbatch command to submit the job script.
 - \$ sbatch batch_script.sh
- Use **scance1** command to cancel and remove the submitted job from queue. (Note: Once the job is cancelled, it cannot be recovered!)
 - \$ scancel 12345

Hands On

- Edit the script, tutorial.sh to fulfil the following scenario:
 - Submitting partition: cpu-opteron
 - Total number of CPU cores: 16
 - Number of nodes: 2
 - Amount of memory per node: 50G
 - Quality of service: short
 - Job name: tutorial
 - Disabled hyper-threading

```
EXAMPLE
#!/bin/bash -1
#SBATCH --partition=cpu-epyc
#SBATCH --job-name=job01
#SBATCH --nodes=1
#SBATCH --ntasks=24
#SBATCH --mem=100G
#SBATCH --qos=normal
#SBATCH --hint=multithread
module load myModule
app -i input.file -o output.file
```

Answer

```
#!/bin/bash -1
#SBATCH --partition=cpu-opteron
#SBATCH --nodes=2
#SBATCH --ntasks=16
#SBATCH --mem=50G
#SBATCH --qos=short
#SBATCH --job-name=tutorial
#SBATCH --output=%x.out
#SBATCH --error=%x.err
#SBATCH --hint=nomultithread
```

Interactive Mode

- When to use Interactive Mode:
 - You have to input commands or intermediate input during the application execution.
 - You are trying to compile your own application.
 - You are trying to debug or troubleshoot your calculation or compilation.
- Requirements:
 - Job parameters
 - Commands to execute

Interactive Mode (cont.)

- To start an interactive session, first, you will need to allocate the resources you need then join the session interactively.
- To allocate resource for interactive session:
 - \$ salloc -p cpu-opteron -N 1 -n 4 --mem=16G --qos=normal
- To join the allocated session interactively:
 - o \$ srun --jobid=12345 --pty bash -1
- To exit the interactive session, enter exit in terminal twice to leave and relinquish the allocated resources.

Example of Interactive Mode

```
[user@umhpc ~]$ salloc -p cpu-opteron -N 1 -n 4 --mem=16G --qos=normal
salloc: Pending job allocation 12345
salloc: job 12345 queued and waiting for resources
salloc: job 12345 has been allocated resources
salloc: Granted job allocation 12345
salloc: Waiting for resource configuration
salloc: Nodes cpu01 are ready for job
[user@umhpc ~]$ srun --jobid=12345 --pty bash -1
[user@cpu01 ~]$ exit
logout
[user@umhpc ~]$ exit
salloc: Relinquishing job allocation 12345
```

Things to Know

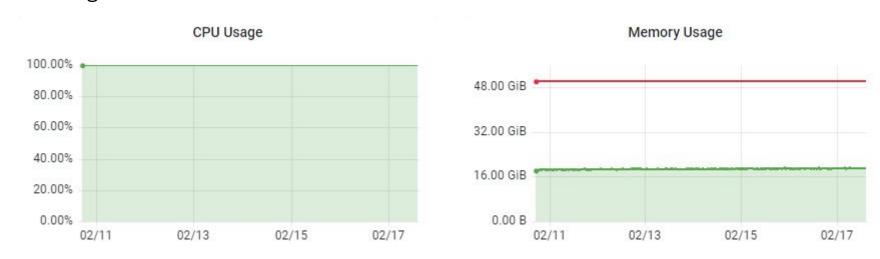
- Application & Modules
- File Transfer
- Job Parameter
- Job Submission
- Post-Job Submission

Job State

- You can check your own job(s) state with the command:
 - \$ squeue -u <username>
- The common job state and the descriptions:

Job State	Description				
PD / PENDING	Pending for resource scheduling.				
R / RUNNING	The job is currently running.				
RQ / REQUEUED	The job has been requeued.				
CG / COMPLETING	The job has done execute and is now completing itself.				
S / SUSPENDED	The job has been suspended.				

JOBID	PARTITION	NAME	USER ST	TIME	NODES	NODELIST (REASON)
53199	сри-ерус	PNaInPS	R	15:23:07	1	cpu15
53195	cpu-epyc	PNaSnAsS	R	1-06:26:03	1	cpu12
53189	cpu-epyc	TaSe	R	2-06:23:33	1	cpu13
53235	cpu-opter	mk STAR	PD	0:00	1	(Resources)
53237	cpu-opter	H5N1 2 c	PD	0:00	1	(Priority)
53238	cpu-opter	H1N1 cuf	PD	0:00	1	(Priority)
53201	cpu-opter	OND-S	PD	0:00	1	(Priority)
53193	cpu-opter	molecule	R	1-11:22:32	1	cpu04
53236	cpu-opter	H5N1_1_c	R	3:52:08	1	cpu01
	cpu-opter		R	3-05:39:24	1	cpu05
53137	cpu-opter	SS	R	3-05:39:24	1	cpu07
53138	cpu-opter	dd	R	3-05:39:24	1	cpu08
	cpu-opter		R	3-05:39:24	1	cpu09
53140	cpu-opter	ZZ	R	3-05:39:24	1	cpu10
53249	cpu-opter	interact	R	58:15	1	cpu01
53200	cpu-opter	ONbC	R	1-06:00:45	1	cpu11
	cpu-opter			1-06:37:24	1	cpu03
	gpu-k10			0:00	1	(Resources)
53041	gpu-k10	02_prod_	R	12:32:19	1	gpu01
53240	gpu-k10	triplet	R	2:54:39		gpu03
	gpu-titan			0:00	1	(Resources)
52965	gpu-titan	05_prod	PD	0:00		(Priority)
	gpu-titan			0:00		(Priority)
	gpu-titan			0:00	1	(job requeued in held state)
52921	gpu-titan	04_prod	R	1:30:05	1	gpu02
53115	gpu-titan	Jupyter	R	6:20:15	1	gpu02
52551	gpu-v100s	rerun	PD	0:00	1	(Resources)
52584	gpu-v100s	Jupyter	PD	0:00	1	(Priority)
52777	gpu-v100s	jq	PD	0:00	1	(Priority)
53178	gpu-v100s	Jupyter	PD	0:00		(Priority)
	gpu-v100s		PD	0:00		(Priority)
	gpu-v100s	_	PD			(Priority)
52498	gpu-v100s	Jupyter	R	6:10:48	1	gpu05


Job State (cont.)

- If your job(s) is not in queue anymore, here are the possible scenario:
 - Your job(s) is/are completed. Check your output log for result.
 - Your job(s) is/are failed. Check your error log for error message.
- You can use **sacct** command to review the exit state of those jobs.
 - \$ sacct --starttime=2023-01-01 --endtime=2023-01-31

[81	umhpc: ~] \$	sacct				
JobID	JobName	Partition	Account	AllocCPUS	State	ExitCode
57721	amber	cpu-epyc	free	24	PENDING	0:0
58374	gromacs k+	gpu-k40c	free	4	PENDING	0:0
58375	gromacs k+	gpu-k40c	free	8	PENDING	0:0
58376	gromacs k+	gpu-k40c	free	12	PENDING	0:0
58377	gromacs k+	gpu-k40c	free	16	PENDING	0:0
58378	gromacs k+	gpu-k40c	free	4	PENDING	0:0
58379	gromacs k+	gpu-k40c	free	8	PENDING	0:0
58380	gromacs k+	gpu-k40c	free	12	PENDING	0:0
58381	gromacs k+	gpu-k40c	free	16	PENDING	0:0
58382	gromacs t+	gpu-titan	free	4	PENDING	0:0
58383	gromacs t+	gpu-titan	free	8	PENDING	0:0
58384	gromacs t+	gpu-titan	free	16	PENDING	0:0
58385	gromacs t+	gpu-titan	free	12	PENDING	0:0
58386	gromacs t+	gpu-titan	free	4	PENDING	0:0
58387	gromacs t+	gpu-titan	free	8	PENDING	0:0
58388	gromacs t+	gpu-titan	free	12	PENDING	0:0
58389	gromacs_t+	gpu-titan	free	16	PENDING	0:0
58390	amber	cpu-epyc	free	24	PENDING	0:0
58395	gromacs_v+	gpu-vl00s	free	20	COMPLETED	0:0
58395.batch	batch		free	20	COMPLETED	0:0
58395.extern	extern		free	20	COMPLETED	0:0
58396	gromacs_v+	gpu-vl00s	free	24	COMPLETED	0:0
58396.batch	batch		free	24	COMPLETED	0:0
58396.extern	extern		free	24	COMPLETED	0:0
58397	gromacs_v+	gpu-vl00s	free	28	COMPLETED	0:0
58397.batch	batch		free	28	COMPLETED	0:0
58397.extern	extern		free	28	COMPLETED	0:0
58398	gromacs_v+	gpu-v100s	free	32	COMPLETED	0:0
58398.batch	batch		free	32	COMPLETED	0:0
58398.extern	extern	_	free	32	COMPLETED	0:0

Job Monitoring

- Make sure your job(s) is running properly.
- \bullet Ways to monitor your job(s):
 - Visit DICC OnDemand portal at https://ood.dicc.um.edu.my/ under Jobs > Active Jobs section.
 - SSH into the node executing your jobs and use htop command for CPU usage and nvidia-smi for GPU usage.
 - Check your output log and error log.
- In most scenario, Opteron will yield 100% CPU usage and the other partition will yield a maximum of 50% CPU usage.

FAQ

- My job was failed and the error message show "OOM error". Why?
 - Out-of-Memory (OOM) error is due to the application tend to use more memory than allocated memory. You try to allocate more memory for that particular job.
- Why my job(s) is/are queueing in the queue for very long period?
 - Check the reason in squeue:
 - Priority: There are more jobs with higher priority than your job(s).
 - Resources: Your job(s) is/are up next once the job(s) currently running in the partition have completed.

Useful Portal

- DICC Website https://dicc.um.edu.my
- DICC Jira Service Desk https://jira.dicc.um.edu.my
- DICC Documentation Confluence https://confluence.dicc.um.edu.my

Hands On

- Create a job script, first_job.sh in the directory, my_first_job to fulfil the following scenario:
 - Submit to cpu-opteron partition.
 - Allocate 4 CPUs, 8 GB memory and 1 node
 - QoS: limited
 - Job name: my_first_job
 - With output and error log specified
- Commands to be executed by the job:

```
echo "This is my first job in $(hostname -s)" sleep 10m
```

- Submit the job as batch mode.
- Use squeue to check the job state.
- Use scancel to cancel the job.
- Use sacct to check your account history.

```
#!/bin/bash -1
#SBATCH --partition=cpu-epyc
#SBATCH --job-name=job01
#SBATCH --nodes=1
#SBATCH --ntasks=24
#SBATCH --mem=100G
#SBATCH --qos=normal
#SBATCH -hint=nomultithread
module load myModule
app -i input.file -o output.file
```

Answer

```
#!/bin/bash -1
#SBATCH --partition=cpu-opteron
#SBATCH --job-name=my_first_job
#SBATCH --nodes=1
#SBATCH --ntasks=4
#SBATCH --mem=8G
#SBATCH --output=%x.out
#SBATCH --error=%x.err
#SBATCH --qos=limited
echo "This is my first job in $(hostname -s)"
sleep 10m
```

Answer

```
[user@umhpc ~]$ sbatch first_job.sh
[user@umhpc ~]$ squeue
[user@umhpc ~]$ scancel <job_id>
[user@umhpc ~]$ sacct
```

Thank You!