
www.um.edu.my

Basic HPC Usage

Session Outcome

▪ Understand the basic components of HPC.
▪ Understand the different storage and file system.
▪ Understand the basic SLURM parameters.
▪ Understand the concept of job submission.
▪ Understand the concept of job monitoring.

Basic Requirements for This Sessions

▪ Basic Linux knowledge
▪ DICC account with HPC access
▪ OpenVPN client
▪ DICC OpenVPN profile
▪ SSH client (PuTTY/MobaXterm/command prompt/terminal)
▪ WinSCP for Windows users; FileZilla for Linux/MacOS users.

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://mobaxterm.mobatek.net/download.html
https://winscp.net/eng/index.php
https://filezilla-project.org/download.php?show_all=1

www.um.edu.my

UMHPC Architecture Design

Login Node

▪ The stuffs that users usually will do in here:
» Transfer and manage files
» Submit jobs
» Check error and output logs
» Monitor jobs

▪ Things to avoid:
» Execute CPU or memory intensive scripts
» Compile application
» Extract large archive file

Storage Cluster

Home Directory Lustre Directory

Storage Solution Ceph Lustre

Directory /home /lustre

Quota 100 GB per user Unlimited

Raw Capacity ~ 87 TB ~ 231 TB

Storage Policy Persistent Non-persistent

Storage Cleanup Policy No Files that have not been accessed for 60 days.

Project Directory No Yes, /lustre/project

Compute Node

▪ Some compute nodes are attached with GPU card(s).
▪ All jobs must be submitted to be executed in compute nodes and NOT login node.
▪ You cannot access to compute nodes directly unless you have at least a job

running in the compute node(s).

Compute Node (cont.)

▪ Currently, there are 6 partitions available in DICC:
» cpu-opteron (default)

• AMD Opteron Processor 6366 HE: 1800 MHz
» cpu-epyc

• AMD EPYC 7F72 24-Core Processor: 3200 MHz
» gpu-k10

• Nvidia Tesla K10 - 3.0 GPU Compute Capability (CC)
» gpu-k40c

• Nvidia Tesla K40c - 3.5 GPU CC
» gpu-titan

• Nvidia Titan Xp - 6.1 GPU CC
» gpu-v100s

• Nvidia Tesla V100S - 7.0 GPU CC

Compute Node (cont.)

▪ Resources summary can be displayed by using the command:
» cluster-info

Account & Limits

▪ Every fresh user in DICC who wish to use HPC must request HPC access in DICC
service desk.

▪ Every fresh HPC user will have limit resources access.

Limited Account Normal Account

Billing Limit 12500 Unlimited

Accessible Partitions cpu-opteron, gpu-k10,
gpu-k40c

All partitions

Walltime 1 hour 7 days

QoS limited short, normal, long

www.um.edu.my

Resource Usage

Priority

▪ Every job have unique priority.
▪ Priority determine which job will start first.
▪ Priority is determined by job age, fairshare and QoS in the ratio of 2:25:1.

Fairshare

▪ Fairshare is meant to maintain the fairness in queuing system.
▪ Every user have the same amount of initial fairshare.
▪ Fairshare is affected by the resource usage over the past 90 days.
▪ Resource usage is calculated by a billing system.

Billing System

▪ Every job submitted to compute node(s) will impose to a billing value.
▪ The billing value is calculated based on the cost of the node during acquisition.
▪ The billing amount for each resource type will be calculated using a ratio

proportionally to the cost of the node, including CPUs, memory and GPUs.
▪ Each core allocated for non-multithreaded jobs will be treated as 2 CPUs and no

multiple multithreaded jobs should fall within the same core.
▪ All jobs will be billed based on the highest amount of resource type allocated.

Billing System (cont.)

Partition CPU Memory GPU MaxPerNode

cpu-opteron 468.75 125 0 30000

cpu-epyc 375 150 0 36000

gpu-k10 656.25 375 2625 21000

gpu-k40c 700 400 11200 22400

gpu-titan 750 200 12000 24000

gpu-v100s 1437.5 500 46000 92000

Example

▪ A non-multithreaded, 2 CPU cores, 64 GB memory and 2 v100s GPUs job running
in gpu-v100s:

▪ The billing value can be breakdown as follow:
» CPU = 4 (2 CPUs per core, 2 cores) * 1437.5 (Billing value per CPU in

gpu-v100s) = 5750 resource usage per minute
» Memory = 64 (64 GB memory) * 500 (Billing value per GB memory in

gpu-v100s) = 32000 resource usage per minute
» GPU = 2 (2 GPUs) * 46000 (Billing value per GPU in gpu-v100s) = 92000

resource usage per minute (Highest)
▪ Hence, the job will be billed for 92000 resource usage per minute as 2 v100s

GPUs has the highest billing value per minute among 2 CPUs and 64 GB memory.

QoS

▪ QoS determine the maximum walltime, priority and resource usage factor of a
job.

QoS Priority UsageFactor Max WallTime

limited 0 10 1 hour

short 2000 1 1 hour

normal 0 1 1 day

long 0 1 7 days

www.um.edu.my

Basic SLURM Job Submission

Steps to Submit A Job

1. Prepare your input files.
2. Determine and load the application(s) of your choice.
3. Determine the SLURM job submission parameters.
4. Determine your job submission type.
5. Submit your job.

Prepare Your Input Files
▪ For Windows user, we recommend user to use WinSCP:

» Protocol: SCP
» Port: 22
» Host name: umhpc.dicc.um.edu.my

Prepare Your Input Files (cont.)
▪ For Linux/MacOS, you can use FileZilla as your FTP/SCP client to transfer your

files between UMHPC and your local workstation.

The HARDER Way To Transfer Files

▪ You can use scp command in your terminal/console/command prompt:
▪ To transfer file into UMHPC:

$ scp /path/to/filename username@umhpc.dicc.um.edu.my:/path/to/destination

▪ To transfer folder into UMHPC:

$ scp –r /path/to/directory username@umhpc.dicc.um.edu.my:/path/to/destination

Hands On

▪ Create a folder, my_first_job in your local machine.
▪ Create an empty text file, tutorial.sh
▪ Transfer the folder into your home directory in UMHPC.

Steps to Submit A Job

1. Prepare your input files.
2. Determine and load the application(s) of your choice.
3. Determine the SLURM job submission parameters.
4. Determine your job submission type.
5. Submit your job.

Application & Modules
▪ Most of the application/module or system library are NOT available in login

node.
Function Login Node Compute Node

List all applications in all compute nodes node-modules -

List all application in current instance module avail module avail

Load a specific application module load module load

List all the loaded application/module module list module list

Unload a loaded module module unload module unload

Unload all loaded module module purge module purge

Hands On

▪ Verify the presence of miniconda using the command:
» conda --version

▪ Check the available module installed in login node.
▪ Load miniconda module.
▪ List all the module(s) had been loaded currently.
▪ Verify again the presence of miniconda using the command:

» conda --version

▪ Unload all the modules.
▪ List out all the module installed in compute nodes.

Answer

$ conda --version

$ module avail

$ module load miniconda/conda-23.5.2

$ module list

$ conda --version

$ module purge

$ node-modules

Steps to Submit A Job

1. Prepare your input files.
2. Determine and load the application(s) of your choice.
3. Determine the SLURM job submission parameters.
4. Determine your job submission type.
5. Submit your job.

SLURM Job Parameters
▪ Job parameters determine what kind of resources you want.

Parameter Description Example

 --partition, -p Specify the partition to run job. --partition=cpu-opteron

--ntasks, -n Specify the number of CPUs/cores required. --ntasks=4

--mem Specify the amount of memory needed per
node.

--mem=16G

--nodes, -N Specify the number of compute nodes. --nodes=1

--job-name, -J Specify the name of the job. --job-name=job01

--gpus, -G Specify the number of GPU card needed. --gpus=1

SLURM Job Parameters

Parameter Description Example

--qos, -q Specify the QoS for the job --qos=normal

--output, -o Specify the filename for output log. --output=output.log

--error, -e Specify the filename for error log. --error=error.log

--hint Enable/Disable hyper-threading --hint=nomultithread

--mail-type Specify email notification on job status changes. --mail-type=ALL

--mail-user Specify which email address to receive the
notification.

--mail-user=your_email@email.c
om

Hyper-Threading

▪ It is highly recommended to include the --hint parameter in the submission
script.

▪ In most of the scenario, disabling hyper-threading will yield better performance.
▪ To disable hyper-threading,

» --hint=nomultithread

Steps to Submit A Job

1. Prepare your input files.
2. Determine and load the application(s) of your choice.
3. Determine the SLURM job submission parameters.
4. Determine your job submission type.
5. Submit your job.

SLURM Job Submission Mode
Batch Mode Interactive Mode

Use submission script to execute. Enter the node to execute (cloud-alike).

Job continue to execute even if you have
lost connection or your session terminated.

Job terminated on connection
lost/terminated session.

Cannot make changes during the execution. Able to make interactive input during the
execution.

Usually done by using the command:
sbatch

salloc to allocate resources.
srun to join allocated resources and run

calculation.

Execute until the maximum walltime.

Must go through queue for resources allocation.

Steps to Submit A Job

1. Prepare your input files.
2. Determine and load the application(s) of your choice.
3. Determine the SLURM job submission parameters.
4. Determine your job submission type.
5. Submit your job.

Batch Mode

When to use Batch Mode:
▪ You have unstable network connection.
▪ The application take a long time to complete.
▪ No input needed during the process of calculation.
▪ You need to run same calculation/simulation multiple times with different input files.

This method is the recommended and standard way of running a job in HPC
environment.

Requirements:
▪ Job script
▪ Job parameters
▪ Commands to execute
▪ Input files

Example of Batch Script
#!/bin/bash –l

#SBATCH --partition=cpu-epyc

#SBATCH --job-name=job01

#SBATCH --nodes=1

#SBATCH --ntasks=24

#SBATCH --mem=100G

#SBATCH --qos=normal

#SBATCH –-hint=nomultithread

module load myModule

app -i input.file –o output.file

Batch Mode (cont.)

▪ Use sbatch command to submit the job script.
$ sbatch batch_script.sh

▪ Use scancel command to cancel and remove the submitted job from queue. (Note:
Once the job is cancelled, it cannot be recovered!)

$ scancel <job id>

Hands On

Edit the script, tutorial.sh to fulfil the following scenario:

▪ Submitting partition: cpu-opteron
▪ Total number of CPU cores: 16
▪ Number of nodes: 2
▪ Amount of memory per node: 50 GB
▪ Quality of service: short
▪ Job name: tutorial
▪ Disabled hyper-threading

EXAMPLE
#!/bin/bash –l

#SBATCH --partition=cpu-epyc
#SBATCH --job-name=job01
#SBATCH --nodes=1
#SBATCH --ntasks=24
#SBATCH --mem=100G
#SBATCH --qos=normal
#SBATCH –-hint=multithread

module load myModule
app -i input.file –o
output.file

Answer

#!/bin/bash –l

#SBATCH --partition=cpu-opteron

#SBATCH --nodes=2

#SBATCH --ntasks=16

#SBATCH --mem=50G

#SBATCH --qos=short

#SBATCH --job-name=tutorial

#SBATCH --output=%x.out

#SBATCH --error=%x.err

#SBATCH --hint=nomultithread

Interactive Mode

When to use Interactive Mode:
▪ You have to input commands or intermediate input during the application execution.
▪ You are trying to compile your own application.
▪ You are trying to debug or troubleshoot your calculation or compilation.

Requirements:
▪ Job parameters
▪ Commands to execute

Interactive Mode (cont.)

▪ To start an interactive session, first, you will need to allocate the resources you
need then join the session interactively.

▪ To allocate resource for interactive session:

$ salloc –p cpu-opteron –N 1 –n 4 --mem=16G --qos=normal

▪ To join the allocated session interactively:

$ srun --jobid=12345 --pty bash –l

▪ To exit the interactive session, enter exit in terminal twice to leave and relinquish
the allocated resources.

Example of Interactive Mode
[user@umhpc ~]$ salloc –p cpu-opteron –N 1 –n 4 --mem=16G
--qos=normal
salloc: Pending job allocation 12345
salloc: job 12345 queued and waiting for resources
salloc: job 12345 has been allocated resources
salloc: Granted job allocation 12345
salloc: Waiting for resource configuration
salloc: Nodes cpu01 are ready for job
[user@umhpc ~]$ srun --jobid=12345 --pty bash –l
[user@cpu01 ~]$ exit
logout
[user@umhpc ~]$ exit
salloc: Relinquishing job allocation 12345

www.um.edu.my

Basic SLURM Utilities

Job Queue Status

▪ You use squeue command to list all job in the current queue.
▪ To list your own job queue status:

$ squeue -u <your_username>

Job Status Description

PD/Pending Pending for resource scheduling.

R/Running The job is currently running.

RQ/Requeued The job has been requeued.

CG/Completing The job has done execute and is now completing itself.

S/Suspended The job has been suspended.

Job Priority

▪ You can use sprio command to list the priority of all current queuing jobs.
▪ The higher the number of job priority, the job is more likely to start next.

Job History

▪ You can use sacct command to review your account job history.
▪ To view your account history within a certain time frame:

$ sacct --starttime=2023-10-01 --endtime=2023-10-31

Job Monitoring

▪ Every user is responsible for monitoring your own jobs to prevent resource
wastage.

▪ To monitor your job:
» Visit DICC OnDemand portal at https://ood.dicc.um.edu.my/ under Jobs >

Active Jobs section.
» SSH into the node executing your jobs and use htop command for CPU

usage and nvidia-smi for GPU usage.
» Check your output log and error log.

https://ood.dicc.um.edu.my/

Useful Portal

DICC Website – https://dicc.um.edu.my
DICC Jira Service Desk – https://jira.dicc.um.edu.my/servicedesk/customer/portals
DICC Documentation Confluence – https://confluence.dicc.um.edu.my

https://dicc.um.edu.my
https://jira.dicc.um.edu.my/servicedesk/customer/portals
https://confluence.dicc.um.edu.my

Hands On

▪ Create a job script, first_job.sh in the directory, my_first_job to fulfil the following scenario:
» Submit to cpu-opteron partition.
» Allocate 4 CPU cores, 8 GB memory and 1 node
» QoS: limited
» Job name: my_first_job
» With output and error log specified

▪ Commands to be executed by the job:

▪ Submit the job as batch mode.
▪ Use squeue to check the job state.
▪ Use scancel to cancel the job.
▪ Use sacct to check your account history.

Example
#!/bin/bash –l

#SBATCH --partition=cpu-epyc
#SBATCH --job-name=job01
#SBATCH --nodes=1
#SBATCH --ntasks=24
#SBATCH --mem=100G
#SBATCH --qos=normal
#SBATCH –hint=nomultithread

module load myModule
app -i input.file –o output.file

Answer
#!/bin/bash –l

#SBATCH --partition=cpu-opteron

#SBATCH --job-name=my_first_job

#SBATCH --nodes=1

#SBATCH --ntasks=4

#SBATCH --mem=8G

#SBATCH --output=%x.out

#SBATCH --error=%x.err

#SBATCH --qos=limited

echo “This is my first job in $(hostname -s)”

sleep 10m

[user@umhpc ~]$ sbatch first_job.sh

[user@umhpc ~]$ squeue

[user@umhpc ~]$ scancel <job_id>

[user@umhpc ~]$ sacct

uniofmalayaunimalayauniversityofmalayawww.um.edu.m
y

Thank You

